IMDA TS CCHN
Issue 1, 1 October 2016

Info-communications Media Development Authority
Resource Management & Standards
10 Pasir Panjang Road
#10-01 Mapletree Business City
Singapore 117438

© Copyright of IMDA, 2016

This document may be downloaded from the IMDA website at http://www.imda.gov.sg and shall not be distributed without written permission from IMDA
Acknowledgement

The Info-communications Media Development Authority (IMDA) and the Telecommunications Standards Advisory Committee (TSAC) would like to acknowledge the following members of the TSAC Working Group 2 (TSAC WG2) from the TSAC term 2008 – 2011 for their invaluable contributions to the preparation of this Technical Specification:

<table>
<thead>
<tr>
<th>IDA TS CCHN Issue 1, Aug 2012 re-issued as IDA TS CCHN, 1 October 2016</th>
<th>Technical Specification for Coaxial Cable Home Networking (CCHN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSAC WG2 Chairman</td>
<td>Heng Kwee Tong, Director (Next Generation – Access & Home Engineering), Singapore Telecommunications Ltd</td>
</tr>
<tr>
<td></td>
<td>Tan Boon Huat, Head (Access & Cable Engineering), StarHub Ltd.</td>
</tr>
<tr>
<td>TSAC WG2 Editor</td>
<td>Yong Hai Hung, Engineer (Network Technology Development), Singapore Telecommunications Ltd</td>
</tr>
</tbody>
</table>

List of TSAC WG2 Members (2008 to 2011)

<table>
<thead>
<tr>
<th>S/N</th>
<th>Organisation</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2Wire Asia</td>
<td>Mr Barry Chen Sales Director</td>
</tr>
<tr>
<td>2</td>
<td>A*STAR Institute for Infocomm Research</td>
<td>Dr. Francois Chin Po Shin Programme Manager</td>
</tr>
<tr>
<td>3</td>
<td>Mr Tony Quek Quee Seng Research Engineer</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Advanced Digital Broadcast</td>
<td>Mr Douglas Pierce VP & GM APAC Business Unit</td>
</tr>
<tr>
<td>5</td>
<td>Alcatel-Lucent Singapore</td>
<td>Mr Philippe GERARD CTO, Singapore & Brunei</td>
</tr>
<tr>
<td>6</td>
<td>Mr Kho Sian Teck Solution Architect - Next Generation Networks</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Association of Telecommunications Industry of Singapore</td>
<td>Mr Khoo Teng Lock</td>
</tr>
<tr>
<td>8</td>
<td>Aztech Technologies Pte Ltd</td>
<td>Mr Ong Ann Tiong Snr R&D Manager</td>
</tr>
<tr>
<td>9</td>
<td>BICSI Southeast Asia</td>
<td>Mr Khoo Lick Chye Managing Director Wireless-Home-Office Pte Ltd</td>
</tr>
<tr>
<td>10</td>
<td>Convergent Systems (S) Pte Ltd</td>
<td>Mr Michael Tan Director</td>
</tr>
<tr>
<td>11</td>
<td>Mr Jason Teo Channel Sales Manager</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Huawei International Pte Ltd</td>
<td>Mr Eason Chua Joo Seng Product Manager</td>
</tr>
<tr>
<td>13</td>
<td>IMDA</td>
<td>Ms Veronica Tan NGNBN Team</td>
</tr>
<tr>
<td>14</td>
<td>Mr Andy Ho Emerging Communications</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Lantiq Asia Pacific Pte Ltd</td>
<td>Mr Volkening Ingo</td>
</tr>
<tr>
<td>16</td>
<td>Marvell Asia Pte Ltd</td>
<td>Mr Leung Hon Kit Field Application Manager</td>
</tr>
<tr>
<td>17</td>
<td>Microsoft Singapore Pte Ltd</td>
<td>Mr Chew Tat Leong</td>
</tr>
<tr>
<td>No.</td>
<td>Company Name</td>
<td>Position</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>18</td>
<td>M1 Limited</td>
<td>National Technology Officer</td>
</tr>
<tr>
<td>19</td>
<td>Nanyang Technological University</td>
<td>Assoc Prof So Ping Lam</td>
</tr>
<tr>
<td></td>
<td></td>
<td>School of Electrical & Electronic Engineering</td>
</tr>
<tr>
<td>20</td>
<td>Nucleus Connect Pte Ltd</td>
<td>Mr. Tran Tan Phat</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Senior Engineer</td>
</tr>
<tr>
<td>21</td>
<td>OpenNet Pte Ltd</td>
<td>Mr Melvin Chan</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Project Manager</td>
</tr>
<tr>
<td>22</td>
<td>Panasonic Singapore Laboratories Pte Ltd</td>
<td>Mr Chien Koh Wei</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Team Leader</td>
</tr>
<tr>
<td>23</td>
<td>Nucleus Connect Pte Ltd</td>
<td>Mr Yu Zhan Raymond</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Senior Staff Engineer</td>
</tr>
<tr>
<td>24</td>
<td>Qualcomm Atheros</td>
<td>Mark Foo</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Regional Sales Manager</td>
</tr>
<tr>
<td>25</td>
<td>Sigma Designs Technology Singapore Pte Ltd</td>
<td>Mr Ron Lee</td>
</tr>
<tr>
<td>26</td>
<td>Singapore Telecommunications Ltd</td>
<td>Mr Yong Hai Hung</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Engineer (Network Technology Development)</td>
</tr>
<tr>
<td>27</td>
<td>StarHub Ltd</td>
<td>Mr Foo Ming Jap</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Senior Manager</td>
</tr>
<tr>
<td>28</td>
<td></td>
<td>Ms Ho Meow Wai</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Manager</td>
</tr>
<tr>
<td>29</td>
<td>Technicolor Asia Pacific Holdings Pte Ltd</td>
<td>Mr Dala Singh</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sales, ASEAN</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>Mr Colin Teoh Chew Hin</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sales, ASEAN</td>
</tr>
<tr>
<td>31</td>
<td>V One Multimedia Pte Ltd</td>
<td>Mr Tan Thye Seng</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CEO</td>
</tr>
</tbody>
</table>
Telecommunications Standards Advisory Committee (TSAC)

The TSAC advises IMDA on the setting of ICT standards as well as on the development and recommendation of specifications, standards, information notes, guidelines and other forms of documentation for adoption and advancement of the standardisation effort of the Singapore ICT industry (hereafter termed “IMDA Standards”).

Telecommunications standards-setting in Singapore is achieved with the assistance of TSAC, where professional, trade and consumer interest in telecommunications standards is represented on the TSAC with representatives from network and service operators, equipment suppliers and manufacturers, academia and researchers, professional bodies and other government agencies.

List of TSAC Members (2012 – 2014)

TSAC Chairman:

Mr Raymond Lee
Director (Resource Management & Standards), Info-communications Development Authority of Singapore

TSAC Members:

Mr Lim Yuk Min
(TSAC Vice-Chairman)
Senior Executive Consultant (Resource Management & Standards), Info-communications Development Authority of Singapore

Dr Tan Geok Leng
Acting Executive Director, Institute for Infocomm Research (I2R), Agency for Science, Technology and Research

Mr Ho Kang Ming Darwin
Executive Council Member, Association of Telecommunications Industry of Singapore

Mr Yip Yew Seng
Honorary Secretary, Association of Telecommunications Industry of Singapore

Mr Goh Kim Soon
SVP Technology Support / Technology Support (IMD), Mediacorp Pte Ltd

Mr Lim Chin Siang
Director, Interactive Digital Media Programme Office
Media Development Authority of Singapore

Ms Tan Sze Siang
Deputy Director, Digital Broadcasting Deployment Office
Media Development Authority of Singapore

Mr Patrick Scodeller
Chief Technical Officer, M1 Limited

Mr Lee Wing Kai
General Manager, Engineering Radio Planning, M1 Limited

Assoc Prof Li Kwok Hung
School of Electrical & Electronic Engineering, Nanyang Technological University

Assoc Prof Xiao Gaoxi
School of Electrical & Electronic Engineering, Nanyang Technological University

Assoc Prof Hari Krishna Garg
Department of Electrical & Computer Engineering, National University of Singapore

Prof Ko Chi Chung
Department of Electrical & Computer Engineering, National University of Singapore
Assoc Prof Tham Chen Khong
Department of Electrical & Computer Engineering, National University of Singapore

Mr Chong Siew Loong
Vice President (Network and Systems), Nucleus Connect Pte Ltd

Mr Tiong Onn Seng
Director – Project & Operations, Opennet Pte Ltd

Mr Daniel Teo
Director – Technical Services, Opennet Pte Ltd

Mr Aw Peng Soon
Chairman of Digital Media, Wireless Chapter of Singapore Infocomm Technology Federation

Mr Lim Yong Nam
Director (Voice Engineering, Next Gen IP Networks), Singapore Telecommunications Ltd

Mr Lee Yeu Ching
Director (Outside Plant Engineering), Singapore Telecommunications Ltd

Mr Soh Keng Hock
Director (Private IP Engineering), Singapore Telecommunications Ltd

Mr Edmund Quek
Associate Director (Radio Network Performance), Singapore Telecommunications Ltd

Dr Wong Woon Kwong
Director of the Office of Research and Industry Collaborations, Singapore University of Technology and Design

Mr Tay Wei Kiang
Assistant Vice President, Business Solutions & Fixed Services, StarHub Integrated Network Engineering, Starhub Ltd

Mr Liong Hang Chew
Assistant Vice President, Personal Solutions & Integrated Applications
StarHub Integrated Network Engineering, Starhub Ltd

Ms Woo Yim Leng
Senior Manager (Resource Management & Standards), Infocommunications Development Authority of Singapore
This page is intentionally left blank.
Contents

Part A Introduction 2
 1 Scope 2
 2 References 2
 3 Abbreviations 2
 4 General Requirements 3
 4.1 Isolation Filter 3
 4.2 Power Supply 3
 4.3 Electromagnetic Compatibility (EMC) and Safety Requirements 3

Part B Home Networking Transceivers (based on ITU-T Rec. G.9954 01/2007) 5
 1 System Reference Model For Coaxial Cable Home Networking Transceivers 5
 2 Frequency and Power Spectral Density 5
 2.1 Frequency Spectrum 5
 2.2 Isolation Filter Requirements 7
 2.3 Spectral Mask 9
 3 Electrical Characteristics 9
 3.1 Transmitter Power 9
 3.2 Transmit Voltage 9
 4 RF Pass-through Port (Optional) 9
Annex Corrigendum / Addendum 11
Changes to IDA TS CCHN Issue 1, July 2014

NOTICE

THE INFO-COMMUNICATIONS MEDIA DEVELOPMENT AUTHORITY (“IMDA”) MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THE MATERIAL PROVIDED HEREIN AND EXCLUDES ANY EXPRESS OR IMPLIED WARRANTIES OR CONDITIONS OF NON-INFRINGEMENT, MERCHANTABILITY, SATISFACTORY QUALITY AND FITNESS FOR A PARTICULAR PURPOSE. SUBJECT TO THE MAXIMUM EXTENT PERMITTED UNDER LAW, IMDA SHALL NOT BE LIABLE FOR ANY ERRORS AND/OR OMISSIONS CONTAINED HEREIN OR FOR ANY LOSSES OR DAMAGES (INCLUDING ANY LOSS OF PROFITS, BUSINESS, GOODWILL OR REPUTATION, AND/OR ANY SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES) IN CONNECTION WITH THE USE OF THIS MATERIAL.

IMDA DRAWS ATTENTION TO THE POSSIBILITY THAT THE PRACTICE OR IMPLEMENTATION OF THIS STANDARD MAY INVOLVE THE USE OF INTELLECTUAL PROPERTY RIGHTS AND TAKES NO POSITION CONCERNING THE EXISTENCE, VALIDITY AND/OR APPLICABILITY OF ANY SUCH INTELLECTUAL PROPERTY RIGHTS, WHETHER ASSERTED BY TSAC MEMBERS OR ANY THIRD PARTY.

AS OF THE DATE OF APPROVAL OF THIS STANDARD, IMDA HAS NOT RECEIVED WRITTEN NOTICE OF ANY PATENT RIGHTS WHICH MAY BE RELEVANT IN RELATION TO THE IMPLEMENTATION OF THIS STANDARD. HOWEVER, IMPLEMENTERS ARE CAUTIONED THAT THIS MAY NOT REPRESENT THE LATEST INFORMATION AND ARE THEREFORE STRONGLY URGED TO CHECK WITH THE RELEVANT DATABASE IN ITU, ISO, IEC OR THE RELATED STANDARDS DEVELOPMENT ORGANISATION FOR INFORMATION OF PATENT RIGHTS. IMPLEMENTERS ARE ADVISED TO OBTAIN THEIR OWN LEGAL AND/OR TECHNICAL ADVICE IN RELATION TO THE IMPLEMENTATION OF THE STANDARD IF REQUIRED.
PART A INTRODUCTION

1 SCOPE

1.1 This Specification describes the use of in-premises coaxial cabling for high speed data networking within the home. The Specification defines the minimum technical requirements for the connection of Home Networking Transceivers (HNT) over the in-premises coaxial cabling.

1.2 The use of the coaxial cable home networking must not interfere with the licensed TV or broadband access services carried in the same medium. It shall comprise HNT equipment (a pair of HNT or more) and associated Isolation Filter (IF) that conform with requirements set out in Part B of this Specification.

2 REFERENCES

For the technical requirements captured in this Specification, reference has been made to the following standards. Where versions are not indicated, implementation of this Specification shall be based on current and valid versions of these standards published by the respective Standards Development Organisations.

Note: Validity of the IEC CISPR 22, EMC standard for information technology equipment, will lapse by 31 March 2017, in sync with IEC’s timeline for withdrawing this CISPR standard, and replacing it with the CISPR 32 standard.

[4] IEC 62368-1, Audio/video, information and communication technology equipment – Part 1: Safety requirements

3 ABBREVIATIONS

AC
BPF
BSP
CL
DC
DOCSIS
HNT
HPNA
IF
IFG
IP
LLC
MAC
MII

Alternating Current
Bandpass Filter
Band-stop Filter
Convergence Layer
Direct Current
Data over Cable Services Interface Specifications
Home Networking Transceivers
HomePNA (former Home Phoneline Networking Alliance)
Isolation Filter
Inter-Frame Gap
Internet Protocol
Link Layer Control
Media Access Control
Media Independent Interface
4 GENERAL REQUIREMENTS

4.1 Isolation Filter

Service providers who offer the coaxial cable home networking option, and suppliers of HNT equipment are required to ensure that the HNT equipment shall be supplied together with IF of overall length not exceeding 56 mm and diameter not exceeding 21 mm. This is intended for facilitating the deployment of IF at the distribution tap that will not cause any obstruction to future work at the distribution tap.

4.2 Power Supply

The HNT equipment may be AC or DC powered. For an AC powered equipment, the Specification shall be complied with when operating from an AC mains supply of voltage, 230V ± 10% and frequency, 50 Hz ± 2%. Where external power supply is used, e.g. AC adaptor, it shall not affect the capability of the equipment to meet the Specification.

4.3 Electromagnetic Compatibility (EMC) and Safety Requirements

4.3.1 Electromagnetic Compatibility (EMC) Assessment

4.3.1.1 Electromagnetic Interference (EMI) or Emission Measurements

The following emissions measurements shall be performed on the HNT equipment, where applicable:

(a) Radiated emissions from the HNT equipment shall be measured to Class B requirements defined in §4 and Tables A.4 and A.5 of CISPR 32 [1];

(b) Conducted emission at the DC power port of the HNT equipment shall be measured to Class B requirements defined in §4 and Table A10 of CISPR 32 [1];

(c) Conducted emission at the AC mains port shall be measured for HNT equipment with dedicated AC/DC power converter to Class B requirements defined in §4 and Table A.10 of CISPR 32 [1] (equipment with DC power port which is powered by a dedicated AC/DC power converter or adapter is defined as AC mains powered equipment [§3.1.1 of CISPR 32]); and

(d) Conducted emission at the wired network port1 of the HNT equipment shall be measured to Class B requirements defined in Table A.12 of CISPR 32 [1].

4.3.1.2 Electromagnetic Susceptibility (EMS) or Immunity Testing

The following immunity tests may be performed on the HNT equipment to requirements defined in CISPR 24 [2], where applicable:

(a) RF electromagnetic field (80 MHz to 1 GHz) at the enclosure of equipment;

(b) Electrostatic discharge at the enclosure of equipment;

(c) Fast transients (common mode) at dc power and ac main power ports that have cables

1 Wired network port is used for voice, data and signaling transfers intended for connection to a communication network, e.g. CATV, PSTN, ISDN, ADSL and LAN (§3.1.32 [1]).
longer than 3 m;

(d) RF common mode 0.15 MHz to 80 MHz at dc power and ac mains power ports that have cables longer than 3 m;

(e) Voltage dips and interruptions at ac mains power port of equipment with dedicated ac/dc power converter; and

(f) Surges, common and differential mode at AC mains power port of equipment with dedicated AC/DC power converter.

4.3.2 Equipment Safety Testing

4.3.2.1 Equipment safety testing or assessment shall be performed to requirements defined in IEC 60950-1 [3] or IEC 62368-1 [4], based on the following assumptions:

(a) HNT equipment is powered by a dedicated external power supply (AC/DC converter or power adapter/charger); and

(b) HNT equipment operates with SELV in environments where overvoltage from telecommunication networks is not possible. SELV refers to voltages not exceeding 42.4 V peak or 60 V DC.

4.3.2.2 For HNT equipment safety assessment performed with the hazard-based approach, the processes defined in IEC 62368-1 [4] shall be used:

(a) Identify energy sources in the HNT equipment;

(b) Classify energy sources (effect on the body or combustible material, e.g. possibility of injury or ignition);

(c) Identify safeguards for protection against energy sources; and

(d) Consider the effectiveness of safeguards with respect to compliance criteria or requirements defined in the IEC 62368-1 standard.
PART B HOME NETWORKING TRANSCEIVERS
(based on ITU-T Rec. G.9954 01/2007 [5])

1 SYSTEM REFERENCE MODEL FOR COAXIAL CABLE HOME NETWORKING TRANSCEIVERS

1.1 Figure 1-1 shows the basic reference model for in-premises coaxial cable home networking transceivers (HNT). The interface of concern in this Specification is the wire-side electrical and logical interface (W1) between a HNT station and the coaxial cable.

![Basic Reference Model Diagram]

Figure 1-1 (Figure 5-1/G.9954): Basic Reference Model

1.2 The HNT system implements a shared medium single-segment network, as shown in Figure 1-2 (Figure 5-3/G.9954) below. All stations on a segment are logically connected to the same shared channel on the coaxial cable.

![HNT Shared Medium Network Segment Diagram]

Figure 1-2 (figure 5-3/G.9954): HNT shared medium network segment on the co-axial cable

1.3 Figure 1-3 below shows an example of the home network using coaxial cable home networking, where a variety of types of network devices (e.g. IP Set-top Boxes) are connected via the coaxial cables in the home, to an Internet Gateway Device (RG) and possible bridges to other home network segments, possibly based on other home networking technologies (e.g. wireless, power-line).
1.4 An Isolation Filter (IF) shall be implemented, where the in-premise coaxial cable network is not physically disconnected from the coaxial cable access network, to prevent interference between HNT devices operating on in-premises cabling with the licensed TV or broadband access services carried in the same medium.

1.5 The IF shall be installed at the distribution point, i.e. before the coaxial cable splitter point where the main cable is split into the different room points.

1.6 The IF serves to ensure network separation between neighbours and isolate the coaxial cable home network from the coaxial cable broadband access network.

1.7 The IF shall provide a minimum of 40dB isolation and shall allow the licensed TV or broadcast access services carried in the same medium to pass through to the home network and isolate the Sub-Mode F frequency spectrum from 52 - 68 MHz.
The technical performance requirements of the broadband coaxial cable system as defined in COPIF 2008 [4] Chapter 13 Section 2 shall be complied with after the introduction of the IF.

2 FREQUENCY AND POWER SPECTRAL DENSITY

2.1 Frequency Spectrum

The HNT shall operate in the Sub-mode F frequency spectrum from 52 to 68 MHz.

2.2 Isolation Filter Requirements

The IF shall be installed to (1) pass through broadcast FM and TV signals and cable TV signals; (2) provide isolation from DOCSIS network; and/or (3) isolate HNT from neighbours. The IF shall minimally fulfil the specifications as provided in Table 2-2 and Figure 2-2 below.
<table>
<thead>
<tr>
<th>S/N</th>
<th>Specification (w.r.t. 75 Ohm Impedance), f (MHz)</th>
<th>Min Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Attenuation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>f <= 42MHz</td>
<td><= 1dB<sup>2</sup></td>
</tr>
<tr>
<td></td>
<td>42MHz < f < 52MHz</td>
<td>>= (1 + (f-42)*40/10)dB</td>
</tr>
<tr>
<td></td>
<td>52MHz <= f <= 68MHz</td>
<td>>= 41dB</td>
</tr>
<tr>
<td></td>
<td>68MHz < f < 85MHz</td>
<td><= (41 - (f-68)*40/17)dB</td>
</tr>
<tr>
<td></td>
<td>f >= 85MHz</td>
<td><= 1dB</td>
</tr>
<tr>
<td>2</td>
<td>Return Loss</td>
<td></td>
</tr>
<tr>
<td></td>
<td>f <= 42MHz</td>
<td>>= 12dB</td>
</tr>
<tr>
<td></td>
<td>42MHz < f < 52MHz</td>
<td><= (12 - (f-42)*11/10)dB</td>
</tr>
<tr>
<td></td>
<td>52MHz <= f <= 68MHz</td>
<td><= 1dB</td>
</tr>
<tr>
<td></td>
<td>68MHz < f < 85MHz</td>
<td>>= (1 + (f-68)*11/17)dB</td>
</tr>
<tr>
<td></td>
<td>f >= 85MHz</td>
<td>>= 12dB</td>
</tr>
<tr>
<td>3</td>
<td>Ripple</td>
<td><= 2dB</td>
</tr>
</tbody>
</table>

Table 2-2: *Isolation Filter (IF) Specifications*

![Filter Magnitude (Mode: Sub-F)](image)

Figure 2-2: *Isolation Filter for Sub-Mode F (52-68 MHz)*

² The filter may exclude 0 - 5MHz for the purpose of lightning/surge protection, if desired.
2.3 Spectral Mask

When transmitting in spectral sub-mode F, the resolution bandwidth used to make this measurement shall be 10 kHz for frequencies between 2.5 and 80.0 MHz, and 3 kHz for frequencies between 0.015 and 2.5 MHz. An averaging window of 213 seconds shall be used, and 1500-octet MTUs separated by an IFG duration of silence shall be assumed. A total of 50 kHz of possibly non-contiguous bands may exceed the limit line under 2.5 MHz, with no sub-band greater than 20 dB above the limit line. A total of 50 kHz of possibly non-contiguous bands may exceed the limit line between 80.0 and 100.0 MHz, with no sub-band greater than 20 dB above the limit line.

3 ELECTRICAL CHARACTERISTICS

3.1 Transmit Power

Stations shall transmit according to the transmit power limitations described in Table 3-1 (Table 7-7/G.9960), corresponding to the spectral mode they transmit. Transmit power shall be measured during the header, across a 75-ohm load between centre and ground, integrated from 0 to 100 MHz.

<table>
<thead>
<tr>
<th>Spectral mode</th>
<th>Transmit power limit [dBm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>[-2 +1]</td>
</tr>
</tbody>
</table>

Table 3-1 (Table 7-7/G.9954): Transmit Power Requirements

3.2 Transmit Voltage

Stations that are not transmitting shall emit less than -85 dBVrms measured across a 75-ohm load between centre and ground.

4 RF PASS–THROUGH PORT (OPTIONAL)

Where a secondary RF Pass-through Port is provided on the HNT device, the Pass through Port shall comply with the following specifications. The provision of the RF pass-through port is optional.
Figure 4: Pass-through Port (Diplexer Structure)

<table>
<thead>
<tr>
<th>Port</th>
<th>Parameter</th>
<th>Frequency</th>
<th>Condition</th>
<th>Required Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line To HPNA</td>
<td>Insertion Loss</td>
<td>5MHz – 42MHz</td>
<td>52MHz – 68MHz</td>
<td>>35dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>75MHz – 860MHz</td>
<td></td>
<td><4dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>52MHz – 68MHz</td>
<td>Measured from Line to HPNA Port. HPNA Port should be 75Ω Terminated.</td>
<td>>15dB</td>
</tr>
<tr>
<td></td>
<td>Return Loss (Reflection)</td>
<td>52MHz – 68MHz</td>
<td></td>
<td>>15dB</td>
</tr>
<tr>
<td></td>
<td>Group Delay</td>
<td>52MHz – 68MHz</td>
<td></td>
<td><100nSec</td>
</tr>
<tr>
<td>Line To DOCSIS + TV</td>
<td>Insertion Loss</td>
<td>5MHz – 42MHz</td>
<td>52MHz – 68MHz</td>
<td><2dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>75MHz – 860MHz</td>
<td></td>
<td>>45dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5MHz – 42MHz</td>
<td>Measured from Line to DOCSIS/TV Port. DOCSIS/TV Port should be 75Ω Terminated.</td>
<td>>15dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>75MHz – 860MHz</td>
<td></td>
<td>>15dB</td>
</tr>
<tr>
<td></td>
<td>Group Delay</td>
<td>5MHz – 42MHz</td>
<td>75MHz – 860MHz</td>
<td><75nSec</td>
</tr>
<tr>
<td></td>
<td></td>
<td>75MHz – 860MHz</td>
<td></td>
<td><25nSec</td>
</tr>
<tr>
<td>HPNA To DOCSIS + TV</td>
<td>Isolation</td>
<td>5MHz – 42MHz</td>
<td>75MHz – 860MHz</td>
<td>>40dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5MHz – 42MHz</td>
<td></td>
<td>>45dB</td>
</tr>
<tr>
<td>DOCSIS + TV To HPNA</td>
<td>Isolation</td>
<td>52MHz – 68MHz</td>
<td></td>
<td>>45dB</td>
</tr>
</tbody>
</table>

Table 4: RF Pass-through Port (Optional) Requirements
Annex

Corrigendum / Addendum

<table>
<thead>
<tr>
<th>Revised TS Page</th>
<th>Section</th>
<th>Items Changed</th>
<th>Date of Issue</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Part A §4.3</td>
<td>The IMDA TS CCHN Issue 1 (October 2016) has replaced the IDA TS CCHN Issue 1 (July 2014). Changes are largely editorial to provide updates and clarity in the application of EMC and safety requirements, in line with standards development that has taken place in the Standards Development Organisation concerned.</td>
<td>1 Oct 16</td>
</tr>
</tbody>
</table>